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Requirements for Muon Acceleration

« Extremely large emittances: 30,000 mm mrad normalized (full)

« Extremely rapid acceleration
0 Avoid excessive decays
0 Real-estate gradients 1 MV/m and above

« Motivation for use: cost

0 To be compared with recirculating linear accelerator (like
CEBAF)

0 Save money by making more passes through RF
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Types of FFAG Solutions Proposed

« Scaling FFAGs (NuFactJ report)
 Linear Non-Scaling FFAGs
« Isochronous FFAGs
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Factors That Drive FFAG Choice

« Cost

« Keeping decays low (this is really cost): high average gradient
 Sufficient Dynamic Aperture

« Keeping RF synchronized

0 Time of flight depends on energy
0 Acceleration too rapid to change RF frequency
0 Must accelerate more quickly: fewer turns, more RF, more cost
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Scaling FFAGs

o Traditional form of FFAG

« Tune indenendent of energy
0 Find a good working point away from resonances
0 Time of flight independent of transverse amplitude (more later)

« NuFactJ scheme as it exists seems expensive
0 Optimization has been demonstrated to give significant
Improvements

0 New ideas on the table (normal conducting spiral sector FFAG
even at high energy, for instance)

0 Need to get optimized, trackable scheme defined

« NuFactJ scheme used low-frequency RF
0 System less efficient at capture/transmission of muons (Palmer)

0 Again, may need optimization
o Difficulty in obtaining high gradients
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Scaling FFAGs
High Frequency RF

« Time of flight gives minimum field index: £ = 1220for 201.25 MHz,
10-20 GeV scaling FFAG, 1.5 MV/m average gradient
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0 This Is not so much larger than existing designs
 This requires many cells (about 180):

k k
n ~ ZWJ > 27'('(
COSjty — COSpy 2

0 Gradient must be maintained over cells, so very few turns (2.3
GV RF for 10-20 GeV)

« Basically forced to low frequency
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Fixed-Frequency Acceleration in Scaling FFAG

Total Energy (GeV)

RF Phase
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Isochronous FFAGS

« Make time of flight independent of energy

0 Time of flight does not give a minimum amount of RF
 Highly nonlinear fields required
« Tunes depend on energy

« Result: poor dynamic aperture (for muons): < 1000 mm mrad
normalized

0 Even have significant losses with these beam sizes

« Plans to address this by correcting chromaticity using two cell
types
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5-Cell Lattice
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Field

-its for Isochronous FFAG
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Isochronous FFAGS
Particle Transmission
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Linear Non-Scaling FFAGs

 Allow the tune to vary. Doesn’t hurt dynamic aperture because:
0 Use linear magnets; resonances not driven strongly
0 Keep every cell the same: only single-cell behavior matters
0 Accelerate rapidly through any (weak) resonance

« Have relatively (for FFAGSs) small apertures: lower cost

« Keep time of flight range small by making isochronous within
energy range

0 Time of flight is parabolic function of energy
0 Allows the use of high frequency RF
0 Unique “gutter acceleration” mode
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Time of Flight
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Tracking in Linear Non-Scaling FFAGs
Longitudinal Phase Space Channel
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Linear Non-Scaling FFAGs
Time of Flight Dependence on Transverse Amplitude

« Problem with time of flight depending on transverse amplitude

dv
T ="To(E) — 27Tmcd—EJn
« High amplitude particles take longer than low amplitude
« Need to insure that RF is synchronized for both low and high

amplitude

0 Limits range of allowed RF frequencies (b)

0 Must increase voltage (a) to be able to accelerate all amplitudes
to full energy

« Passing to next stage a problem: larger time spread, high
ampliutde start late
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Time of F

ight vs. Amplitude
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Longitudinal Phase Space
Baseline
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Longitudinal Phase Space
Increased b
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Longitudinal Phase Space
Increased Voltage
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Linear non-scaling FFAGS
Addressing Problems

« Reducing time of flight range alone will not improve this effect
0 Phase space improves for low amplitude
0 High amplitude gets worse: more cells per turn

o Introduce small nonlinearities to correct chromaticity
0 Initial attempts don’t do so well

« Time slip simply proportional to number of cells we go through
0 Fill maximum number of cells with RF
0 Make fewer turns: more voltage

o Introduce higher harmonic RF

0 Reduces energy spread correlated to different times of flight
0 Increases time of flight range that is accelerated

« Only promise ellipsiodal distribution transmitted: large longitudinal
amplitude, low transverse amplitude
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Longitudinal Phase Space
Square Wave RF
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Concluding Observations

o Isochronous FFAGs, like all highly nonlinear non-scaling FFAGs
studied so far, seem to have transverse dynamic aperture
problems for large muon emittances

« Scaling FFAGs currently showing poorer performance and higher
cost than other solutions
0 A significant optimization effort may help this
0 Cannot overcome being forced to use lower RF frequencies

 Linear non-scaling FFAGs must address the dependence of time
of flight on transverse amplitude

0 We have several methods to attack the problem, and we will
probably need to employ them all

0 Costs will be higher than originally envisioned

0 May lead us to avoid using FFAGs at lower energies where they
are less efficient
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